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Introduction
We study intertwining relations, supersymmetry

and Darboux transformations for time-dependent
and time-independent generalized Schrödinger
equations [3]-[8]. We obtain intertwiners in an
explicit form, by means of which we construct
arbitrary-order Darboux transformations for our
class of equations. We develop a corresponding su-
persymmetric formulation and prove equivalence of
the Darboux transformations with the supersymme-
try formalism.

We also elaborate another method of construct-
ing a time-dependent periodic Hamiltonian for
which a system of Schrödinger equations admits
analytic solutions [9]-[12]. Time-independent solu-
ble problems are transformed into time-dependent
ones by a set of unitary time-dependent transfor-
mations and a proper choice of initial states. The
cyclic evolution of quantum systems for periodic in
time Hamiltonians is studied. A class of periodic
time-dependent Hamiltonians with cyclic solutions
is constructed in a closed analytic form. The pe-
riodic time-dependent Hamiltonians are generated
whose expectation values for cyclic solutions do not
depend on time. It is shown, the spin-expectation
values and probability density in a given point
of space-time are not dependent on time, too.
As a consequence, this approach can be used for
modelling quantum dynamic wells and wires with
the effect of a particle localization. Nonadiabatic
geometric phases are calculated in terms of ob-
tained cyclic solutions. A time-dependent periodic
Hamiltonian admitting exact solutions is applied
to construct a set of universal gates for quantum
computer. A way of obtaining entanglement
operators is discussed, too.

Reconstruction of quantum well poten-
tials for the time-independent generalized
Schrödinger equation
The study of the generalized Schrödinger equa-
tion with a position-dependent (effective) mass has
recently attracted interest in condensed matter
physics as well as related fields of physics. In partic-
ular, the effective mass Schrödinger equation is used
for the description of electronic properties of semi-
conductor heterostructures and quantum dots. The
concept of energy-dependent potentials is used in
nuclear physics helium clusters and metal clusters.
As for the semiconductor heterostructures is con-
cerned, the progress in this area became possible,
due to the development of technologies and tech-
niques, such as Molecular Beam Epitaxy (MBE) for

instance, which enables to deposit thin layers of dif-
ferent materials one on top of the other, with almost
atomic precision. The last one, in its turn, pro-
vides the opportunity to produce a variety of low-
dimensional structures. In practice the quantum
wells of different shapes are produced by means of
MBE technique, when the semiconductor layers are
grown subsequently one by one and these layers are
characterized by different electron effective masses.
The subsequent semiconductor layers stuck together
make the quantum well and as a result, one can con-
sider such structure as having effective mass which
depends on the space variable. One of the most
important problems of quantum engineering is the
construction of multi-quantum well structures pos-
sessing desirable spectral properties [1, 2]. There-
fore, the problem of reconstruction of quantum well
potentials with a predetermined energy spectrum is
very important to extend the opportunities for in-
vestigation of low-dimensional structures. The tech-
nique of Darboux transformation operators allows
the above mentioned potential reconstruction.

We construct Darboux transformations for a gen-
eralized Schrödinger equation [3]-[7]
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φ(x)+ v(x)φ(x) = h(x)Eφ(x) ,

(1)
to generate the potentials which support the desir-
able spectrum. Here m(x) stands for the particle’s
effective mass, h(x) and v(x) denote the potentials,
φ(x) is the wave function and E denotes the real-
valued energy. By using the technique of intertwin-
ing relations

LH = H1L , φ1 = L φ (2)

we have obtained in [5] the intertwining operator
L, the transformed potential v1(x) and the corre-
sponding solutions φ1(x) in the form:
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′
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φ . (5)

Note that the transformation function U1 define the
transformation operator L and the new potential v1
and corresponding solutions φ1. The new potential
depends not only from the potential v and from
the additional potentials m and h. The method
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allows one to generate isospectral potential pairs,
where bound states can be added or removed in
one of the partners. Our generalized Darboux
transformations comprises the position-dependent
effective mass case and the case of linearly energy-
dependent potentials, as well as the conventional
case of Schrödinger equation. Evidently, employing
the Darboux transformation one more to obtained
model, one can construct new exactly solvable
models for the generalized Schrödinger equation.

Chain of Darboux transformations
Iterating the procedure n times in regard to the

given operator H, one arrives at the operator Hn,
which satisfies the intertwining relation

LH = HnL.
In this way one gets [6]
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(6)
φn = Lφ = Lnφn−1 = LnLn−1...L1φ, (7)

where L is the n-th order differential operator:

L = LnLn−1...L1, Ln =
1√
mh

(
d

dx
+Kn

)
, (8)

Kn = −χ ′
n−1χ

−1
n−1, K1 = −U ′

1

U1

and χn−1 ≡ χn−1(x, λn) is obtained by means of the
”n”-order transformation, applied to the solution
Un of the equation (10) with the eigenvalue λn

χn−1 = Ln−1Un =
1√
mh

(
d

dx
+Kn−1

)
Un. (9)

It is clear that χn−1 is the solution of (10) with the
potential vn−1, and χn−1 can be taken as a new
transformation function for the Hamiltonian Hn−1

to generate a new potential. It should be noted, that
the chain of n first-order Darboux transformations
results in a chain of exactly solvable Hamiltonians
H → H1 → ...→ Hn.

We have established a relation between first-
order Darboux transformations, supersymmetry
and factorization of the Hamiltonians that are
associated with our generalized Schrödinger equa-
tion. Furthermore, our methods allow for the
generation of isospectral potentials, where one of
the potentials has additional or less bound states
than its partner. The procedure can be repeated
as many times as it is needed to construct new
potential quantum well and corresponding solutions
with a given spectrum. We have constructed a
chain of Darboux transformations for a generalized
Schrödinger equation with position dependent mass
and with energy dependent potentials. On concrete
examples we have shown [4]-[6] how to apply the

Darboux transformations technique for modeling
quantum well potentials with the given spectrum
for investigation of low-dimensional structures
in nanoelectronics. In the particular case of a
conventional Schrödinger equation our generalized
Darboux transformations reduce correctly to the
well-known expressions.

Supersymmetry and Darboux transfor-
mation for the generalized time-dependent
Schrödinger equation
In [7] we developed the supersymmetry formalism
for generalized time-dependent Schrödinger equa-
tions with position-dependent mass and weighted
energy and prove equivalence with the generalized
Darboux transformation. We obtain the supersym-
metric Hamiltonian with two superpartner Hamil-
tonians in a factorized form. Note that, instead of
having factorized a scalar operator as in the con-
ventional supersymmetry, here we have factorized
a matrix operator depending on spatial and time
variables. We consider the following generalized,
time-dependent Schrödinger equation in (1 + 1) di-
mensions and units h̄2/2 = 1:

i h ψt = −
[
∂x

(
1
m

)
∂x

]
ψ + v ψ , (10)

where the index and the symbol ∂ denote partial
differentiation, m = m(x, t) stands for the particle’s
effective mass, h = h(x, t) and v = v(x, t) denote
the potentials, and ψ = ψ(x, t) is the solution. By
using the intertwining operator technique

L(i∂t −H) = (i∂t − H̃)L , φ̃ = L φ (11)

we obtain the explicit form of the transformed po-
tential ṽ, the intertwiner L and the transformed so-
lution ψ̃ , respectively:
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ψ̃ = Lψ =
β√
h m

[
∂x − log(U)x

]
ψ, (14)

where β = β(t) is an arbitrary, purely time-
dependent constant of integration. The transforma-
tion function U defines the transformation operator
L, the new potential ṽ and corresponding solutions
ψ̃. It was shown in [7] that the initial Hamiltonian
H and the transformed Hamiltonian H̃ can be fac-
torized
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H = L+L + λ1 , (15)

H̃ = L L+ + λ2, (16)

or in an equivalent form

Hm =
{
Q+, Q

}
+ Λ. (17)

Here Λ is a diagonal factorization matrix
Λ = diag(λ1, λ2) with elements λ1 = λ1(x, t)
and λ2 = λ2(x, t) depending on spatial and time
variables. It is shown that

λ1 = i
Ut

U − C , λ2 = λ1 + i
Bt

B
− C ,

where C is an integration constant and
B = β/

√
h m.

The fact that the factorization matrix
Λ depends on spatial and time variables
through the functions U = U(x, t) and
B = B(x, t) is nonstandard. In a particular
case, when the potentials m and h do not depend
on time, Λ can be written as Λ = λ1I, where I is
the identity matrix. Moreover, if the transforma-
tion function U can be presented in a factorized
form like U(x, t) = F (x)S(t), then λ1 becomes
independent of the spatial variable.

We have studied in [7, 8] intertwining relations,
supersymmetry and Darboux transformations for
time-dependent generalized Schrödinger equations.
We have obtained intertwiners in an explicit form,
by means of which we construct arbitrary-order
Darboux transformations for our class of equations.
We developed a corresponding supersymmetric
formulation and proved equivalence of the Darboux
transformations with the supersymmetry formal-
ism. Finally we have shown that our Darboux
transformations can also be constructed by means
of point transformations, avoiding the use of
intertwiners.

Periodic time-dependent Hamiltonians
In the papers [9]-[12] we elaborated a technique

of constructing a periodic time-dependent Hamilto-
nian admitting exact solutions with the use of an
exactly soluble time-independent Hamiltonian, uni-
tary time-dependent transformations and a proper
choice of initial states. A class of periodic time-
dependent Hamiltonians with cyclic solutions is
constructed in a closed analytic form. In partic-
ular, the periodic time-dependent Hamiltonians are
generated whose expectation values for cyclic solu-
tions and spin-expectation values do not depend on
time. It means that time-dependent equations for
the obtained time-periodic potentials possess solu-
tions and properties like time-independent ones. As
a consequence, this approach can be used for mod-
eling quantum dynamic wells with properties of dy-
namic localization. The time evolution matrices are
obtained in an explicit form and used to construct
logic gates for computation [10]-[12]. A way of ob-
taining entanglement operator is discussed, too.

Recent achievements in microfabrication tech-
nology afford opportunities of constructing two-
dimensional quantum wells, superlattices, quantum
wires and dots with properties of particle confine-
ment. As it was shown in [ W. Paul and M. Raether,
Z.Phys. vol. 140, (1955) 262] and [A.V. Gaponov
and M.A. Miller, J.Eksper.Teor.Fiz.], under definite
conditions a particle can be localized in a nonuni-
form high frequency electromagnetic field. Paul
and Raether, Gaponov and Miller considered the
classical movement. Quantum mechanical analy-
sis has been made in [I.E. Tralle, Phys.Stat.Sol.
1994, vol.181, p.97; R. Cook et.al., Phys.Rev., 1985,
vol. A31, p.564, V.N. Gheorghe and F. Vedel,
Phys. Rev., 1992, vol. A45, p.4828]. They consid-
ered a particle motion in a rapidly oscillating field
of the form V (r, t) = V (r) cosωt in terms of the
Shcrödinger equations with periodic V (r). Their
main result is that for a sufficiently high frequency
ω the time-dependent potential is equivalent to the
time-independent effective potential and, as a se-
quence, a particle can be confined. This result is a
quantum-mechanical analog of the Gaponov, Miller,
Paul effect. We generated more complicated time-
dependent potentials which with special initial func-
tions give the effect like time-independent potentials
and can be used for investigation of the dynamic
particle localization.

Suggested method allows to generate exactly
soluble time-dependent Hamiltonians from time-
independent ones. The time evolution matrices are
obtained in an explicit form and used to construct
logic gates for computation. The approach opens
opportunities for modeling quantum dynamic sys-
tems with predetermined properties, in particular,
quantum wells with properties of dynamic localiza-
tion.
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